Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium.
نویسندگان
چکیده
Potential applications of engineered, functional, cardiac muscle extends from basic research through drug discovery to engineering heart tissue for transplantation. One of the central questions in cardiac tissue engineering is to understand and control the complex interactions between the cardiac muscle cells and their environment. Recent progress in chemistry, material science, and cell biology have made possible the control of the extracellular environment (soluble factors and also cell-substrate signaling) in in vitro systems. In this study we report on the development of a defined system (artificial surface, serum-free medium combination, consistent cell preparation), which promotes the differentiation and long-term survival of rat embryonic cardiomyocytes. Cardiac muscle cells plated on a N-1 (3-(trimethoxysilyl) propyl) diethylenetriamine (DETA) surface in serum-free medium survived for more than 8 weeks in vitro and maintained their contractile and electrophysiological properties. Our methods are also compatible with advanced cell patterning techniques such as microcontact printing and photolithography which now could enable systematic spacial modifications to create growth substrates for the study of the role of contact signaling in cardiac myocyte development and physiology. It also provides a test-bed for the long-term evaluation of soluble compounds such as toxins and drug candidates in a defined system.
منابع مشابه
Optimization of Key Factors in Serum Free Medium for Production of Human Recombinant GM-CSF Using Response Surface Methodology
Researchers add serum to a classical medium at concentrations of 5 to 10% (v/v) to grow cellsin-vitro culture media. Unfortunately, serum is a poorly defined culture medium componentas its composition can vary considerably while serum-free cell culture media are an excellentalternative to standard serum-containing media and offer several major advantages. Advantagesof us...
متن کاملOptimization of Key Factors in Serum Free Medium for Production of Human Recombinant GM-CSF Using Response Surface Methodology
Researchers add serum to a classical medium at concentrations of 5 to 10% (v/v) to grow cellsin-vitro culture media. Unfortunately, serum is a poorly defined culture medium componentas its composition can vary considerably while serum-free cell culture media are an excellentalternative to standard serum-containing media and offer several major advantages. Advantagesof us...
متن کاملLong-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium.
Mouse embryonic stem (mES) cells and mouse induced pluripotent stem (miPS) cells are commonly maintained on inactivated mouse embryonic fibroblast feeder cells in medium supplemented with fetal bovine serum or proprietary replacements. An undefined medium containing unknown quantities of reagents has limited the development of applications for pluripotent cells because of the relative lack of k...
متن کاملCulturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media
Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...
متن کاملA Defined and Xeno-Free Culture Method Enabling the Establishment of Clinical-Grade Human Embryonic, Induced Pluripotent and Adipose Stem Cells
BACKGROUND The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable. METHODOLOGY/PRINCIPAL FINDINGS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 25 25 شماره
صفحات -
تاریخ انتشار 2004